PG-CS-1124 MMSS-31

P.G. DEGREE EXAMINATION -FEBRUARY, 2023

Mathematics

Third Semester

TOPOLOGY

Time : 3 hours

Maximum marks : 70

SECTION A — $(5 \times 5 = 25 \text{ marks})$ Answer any FIVE questions out of Eight Questions in 300 words. All questions carry equal marks.

- 1. If A is a subspace of X and B is a subspace of Y, then show that the product topology on $A \times B$ is the same as the topology $A \times B$ inherits as a subspace of $X \times Y$.
- 2. If A is a subset of the topological space X, then prove that $x \in \overline{A}$ if and only if every open set U containing x intersect A.
- 3. Show that the union of a collection of connected subspaces of X that have a point in common is connected.

- 4. Show that every compact Hausdorff space is normal.
- 5. Define a completely regular space. Show that a subspace of a completely regular space is completely regular.
- 6. State and prove uniform limit theorem.
- 7. If $f: X \to Y$ is a continuous map of the compact metric space (X, d_X) to the metric space (Y, d_Y) , prove that f is uniformly continuous.
- 8. Show that a subspace of a regular space is regular.

SECTION B — $(3 \times 15 = 45 \text{ marks})$

Answer any THREE questions out of Five questions in 1000 words.

- 9. (a) Let (X,τ) be a topological space and C is a collection of open sets of K such that for each open set U of X and each x∈U there exists C∈C such that x∈C⊂U. Show that C is a basis for the topology τ on X. (12)
 - (b) Define a topology and give an example. (3)
 - 2 **PG-CS-1124**

- 10. Let X and Y be topological spaces. Let $f: X \to Y$. Then show that the following are equivalent.
 - (a) f is continuous
 - (b) For every subset A of X, one has $f(\overline{A}) \subset \overline{F(A)}$.
 - (c) For every closed set B of Y, the set $f^{-1}(B)$ is closed in X.
 - (d) For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$.
- 11. If L is a linear continuum in the order topology, then show that L is connected and are rays in L.
- 12. Show that every regular space with a countable basis is normal.

3

13. State and prove the Tietze extension theorem.

PG-CS-1125 MMSS-32

P.G. DEGREE EXAMINATION – FEBRUARY, 2023.

Mathematics

Third Semester

FUNCTIONAL ANALYSIS

Time : 3 hours

Maximum marks: 70

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions out of Eight Questions in 300 words.

- 1. Define a Banach space and show that \mathbb{R}^n where \mathbb{R} is a set of real numbers, is a Banach space.
- 2. If N is a normed linear space and x_0 is a non-zero vector in N, then show that there exists a functional f_0 in N^* such that $f_0(x_0) = ||x_0||$ and $||f_0|| = 1$.

- 3. Let S be a non-empty subset of a Hilbert space H, show that
 - (a) $S \subset S^{\perp \perp}$ and
 - (b) $S \cap S^{\perp} = \{0\}.$
- 4. Show that the adjoint operation $T \to T^*$ on $\mathcal{B}(H)$ has the following properties.
 - (a) $(T_1 T_2)^* = T_2^* T_1^*$
 - (b) $||T^*T|| = ||T||^2$.
- 5. Show that the spectrum of an element x, r(x) is non-empty.
- 6. State and prove the uniform boundedness theorem.
- 7. State and prove the parallelogram law.
- 8. Show that an operator *T* on a Hilbert space *H* is unitary if and only if it is isometric isomorphism of *H* onto itself.
 - 2 **PG-CS-1125**

PART B — $(3 \times 15 = 45 \text{ marks})$

Answer any THREE questions out of Five questions in 1000 words.

All questions carry equal marks.

- 9. If N is a normed linear space and N' is a Banach space, then show that the set $\mathcal{B}(N, N')$ the set of all continuous linear transformations of N into N', is a Banach space.
- 10. State and prove the open mapping theorem.
- 11. Let *H* be a Hilbert space, and let *f* be an arbitrary functional in H^* . Show that there exists a unique vector *y* in *H* such that f(x) = (x, y) for every *x* in *H*.
- 12. (a) If *T* is an operator on *H* for which (Tx, x) = 0 for all *x*, then show that T = 0.
 - (b) Show that if $P_1, P_2, ..., P_n$ are projections on closed linear subspaces $M_1, M_2, ..., M_n$ of H, then show that $P = P_1 + P_2 + ... + P_n$ is a projection if and only if the P_i 's are pairwise orthogonal and in this case, P is a projection on $M = M_1 + M_2 + ... + M_n$. (7 + 8)
- 13. Show that the spectral radius $r(x) = \lim ||x^n||^{\frac{1}{n}}$.

3

PG-CS-1126 MMSS-33

P.G. DEGREE EXAMINATION -FEBRUARY, 2023

Mathematics

Third Semester

ORDINARY DIFFERENTIAL EQUATIONS

Time : 3 hours

Maximum marks : 70

SECTION A — $(5 \times 5 = 25 \text{ marks})$ Answer any FIVE questions out of Eight Questions in 300 words. All questions carry equal marks.

- 1. Solve the initial value problem 4y''-8y'+3y=0, $y(0)=2, y'(0)=\frac{1}{2}$.
- 2. Suppose $\phi_1, \phi_2, ..., \phi_n$, be *n* solution of L(y) = 0 on an interval I containing a point x_0 then show that $W(\phi_1, ..., \phi_n)(x) = e^{-a_1(x-x_0)}W(\phi_1, ..., \phi_n)(x_0)$.
- 3. Show that $\int_{-1}^{1} P_n(x) P_m(x) dx = 0$. where $n \neq m$.
- 4. State and prove the existence theorem for analytic coefficients.

5. Show that -1 and 1 are regular singular point for the Legendre equation

 $(1-x^2)y''-2xy' + \alpha(\alpha+1)y = 0$

- 6. Compute the indicial polynomial for the equation $x^2y''+a(x)xy'+b(x)y=0$ where a, b have convergent power series, expansions for $|x| < r_0$, $r_0 > 0$.
- 7. Write a brief notes on Lipschitz condition.
- 8. The successive approximations, ϕ_k defined by $\phi_0(x) = y_0$, exist as continuous functions on $I: |x - x_0| \leq = a = \min \left\{ a, \frac{b}{m} \right\}$, and $(x, \phi_k(x))$ is in R for x in I, then show that the ϕ_k satisfy $|\phi_k(x) - y_0| \leq M |x - x_0|$ for all x in I.

SECTION B — $(3 \times 15 = 45 \text{ marks})$

Answer any THREE questions out of Five questions in $1000 \ {\rm words}.$

All questions carry equal marks.

- 9. State and prove the existence and uniqueness theorem of IVP.
- 10. Suppose ϕ be any solution of L(y) = 0 on an interval I contain a point x_0 then for all x in I and show that $\|\phi(x_0)\|e^{-k|x-x_0|} \leq \|\phi(x_0)\| \leq \|\phi(x_0)\|e^{k|x-x_0|}$, where $k = 1 + |a_1| + \ldots + |a_n|$.
 - $\mathbf{2}$

11. (a) Show that
$$\int_{-1}^{1} P_n^2(x) dx = \frac{2}{2n+1}$$
. (10)

- (b) Show that there exist n linearly independent solution of L(y) = 0 on 1. (5)
- 12. Compute the solution for the bassel equation $x^2y''+xy'+(x^2-a^2)y=0$ of order a where α is constant, Re $\alpha \ge 0$.
- 13. Suppose M, N be two real valued functions which have continuous first partial derivatives on some rectangle $R: |x x_0| \le a, |y y_0| \le b$, then prove that the equation M(x, y) + N(x, y)y' = 0 is exact in R if and only if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ in R.

3

PG-CS-1126

PG-CS-1127 MMSS-34

P.G. DEGREE EXAMINATION — FEBRUARY 2023.

Mathematics

Third Semester

NUMERICAL ANALYSIS

Time : 3 hours

Maximum marks : 70

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions out of Eight questions in 300 words.

- 1. Solve the system of equation using gauss elimination method 3x + y z = 3, 2x 8y + 2 = -5, x 2y + 9z = 8.
- 2. Find the dominant of eigen value and eigen vector of $A = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix}$ using power method.

3. Using Lagrange's formula, calculate f(3) from the following table

- 4. Find the value of $\log 2^{\frac{1}{3}}$ from $\int_0^1 \frac{x^2}{1+x^3} dx$ using Simpson's one third rule with h = 0.25.
- 5. Write a brief note on Chebyshev polynomials
- 6. For each appropriate function f(x) there is a unique least squares polynomial approximation of degree at most n which minimizes.
- 7. Using Taylor series method, compute the value of y(0.2) correct to 3 decimal places from $\frac{dy}{dx} = 1 2xy$ given that y(0) = 0.
- 8. Find the solution of $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to $u(x,0) = \sin \pi x, 0 \le x \le 1$, u(x,0) = u(1,t) = 0 using Schmidt method.
 - 2 **PG-CS-1127**

PART B — $(3 \times 15 = 45 \text{ marks})$

Answer any THREE questions out of Five questions in 1000 words.

All questions carry equal marks.

9. Solve the following system of equation by Gauss Seidal iteration method

 $\begin{array}{l} 10x_1-2x_2-x_3-x_4=3\,,\quad -2x_1+10x_2-x_3-x_4=15\,,\\ -x_1-x_2+10x_3-2x_4=27\,,\\ -x_1-x_2-2x_3+10x_4=-9 \end{array}$

10. (a) The population of a town in the census is as given in the data estimate the population in the year 1996 using Newton's backward interpolation formula (8)

Year(x)19611971198119912001Population(y)46668193101(in 1000s)

- (b) From the following table, find the value of
- tan 45° 15' by using Newton forward interpolation method. (7)

 x° 45 46 47 48 49 50

 $tan \ x^{o} \ 1.00000 \ 1.03553 \ 1.07237 \ 1.11061 \ 1.15037 \ 1.19175$

- 11. Suppose f(x) be continuous on [a, b] and $Q_n(x) = \sum_{j=0}^n C_j P_j(x)$, where n=0, 1, 2, ..., and $c_j = \int_a^b P_j(x) f(x) dx$, j = 1, ..., n be the least squares polynomial approximations to f(x) on [a, b]. The prove that $\lim_{n\to\infty} J_n = \lim_{n\to\infty} \int_a^b [f(x) - Q_n(x)]^2 dx = 0$ and have Parseval's equality $\int_a^b f^2(x) dx = \sum_{j=0}^\infty c_j^2$.
- 12. Find the values of y(0.2) and y(0.4) using Rungekutta method of fourth order with y(0)=1 given that $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$.
- 13. Given that $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, u(0,t) = 0, u(4,t) = 0 and $u(x,0) = \frac{x}{3}(16 x^2)$. Find u_{ij} where i = 1,2,3,4 and j=1, 2 by using Crank nicholson's method.

PG-CS-1128 MMSSE-5

P.G. DEGREE EXAMINATION – FEBRUARY 2023.

Mathematics

Third Semester

GRAPH THEORY

Time : 3 hours

Maximum marks : 70

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions out of Eight questions.

- 1. Define the following of a graph G:
 - (a) Radius
 - (b) Diameter
 - (c) Girth.
- 2. Prove that there are exactly two isomorphism classes 4-regular simple graphs with 7 vertices.

- 3. Prove that if G is Hamiltonian then for every non-empty proper subset S of V, $\omega(G-S) \leq |S|$.
- 4. Apply Mycielskian construction for 5-cycle graph and sketch the resulting graph.
- 5. Prove that K_5 is non-planar.
- 6. Find the chromatic polynomial of K₄.
- 7. Briefly write about use of Wang and Kleitman's algorithm.
- 8. Define the following
 - (a) Matching
 - (b) Perfect Matching
 - (c) Maximum matching in a graph G.

PART B — $(3 \times 15 = 45 \text{ marks})$

Answer any THREE questions out of Five questions

All questions carry equal marks.

9. Use Prim's algorithm to find a minimum spanning tree (MST) for the given weighted graph.

 $\mathbf{2}$

- 10. State and Prove Menger's theorem.
- 11. Prove that a simple graph G is Eulerian if and only if it is connected and every vertex has an even degree.
- 12. State and prove Vizing's theorem.
- 13. State and prove Euler's formula on planarity.